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Quaternion-based Robust Trajectory Tracking Control of a Quadrotor
Hover System
Derek Hoffman, Muhammad Rehan, William MacKunis, and Mahmut Reyhanoglu*

Abstract: This paper presents a robust nonlinear output feedback control method that achieves three degree of
freedom (3-DOF) attitude trajectory tracking of a hover system test bed. The proposed control method formally
incorporates dynamic model uncertainty in addition to test bed voltage constraints. To reduce the computational
requirement in the closed-loop system, constant feedforward estimates of the input-multiplicative parametric un-
certainty are utilized in lieu of adaptive parameter estimates. To eliminate the need for angular rate measurements,
the control design employs a bank of dynamic filters, which operates as a velocity estimator in the closed-loop
system. A rigorous error system development and Lyapunov-based stability analysis are presented to prove asymp-
totic 3-DOF attitude trajectory tracking control. Computer simulation and experimental results are also included to
illustrate the performance of the attitude control method using the Quanser 3-DOF hover system test bed.
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1. INTRODUCTION

Control applications involving quadrotor unmanned
aerial vehicles (UAV) have garnered significant interest in
recent years by virtue of their versatility, maneuverability,
and ease of use. Quadrotors are a practical solution for
a wide array of tasks, including search and rescue, area
mapping, and surveillance. The high degree of nonlin-
earity, state coupling, and general model uncertainty in
the quadrotor dynamics create significant challenges in
quadrotor control design. As a result, a plethora of re-
search literature exists, which address one or more of these
inherent challenges. However, there remains a need for
detailed control design and rigorous performance analy-
sis, which formally incorporate the multiple practical lim-
itations inherent in quadrotor control implementation.

One of the most fundamental objectives in quadrotor
control applications is that of autonomous trajectory track-
ing. Tracking control of quadrotors is addressed in [1–10].
In [3], a full experimental treatment of aerial robots is in-
vestigated, along with an innovative means of identifying
the necessary inverse kinematics. A fuzzy logic approach
can be seen in [5], comparing type-1 and type-2 neural
networks in terms of performance on a quadrotor sys-
tem subjected to real-time disturbance experiments. Also
noteworthy is [4], which achieves the task of landing a
quadrotor upon a moving platform autonomously, making
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use of only relative position measurements. The task in [4]
is divided into three different phases defined in terms of a
virtual target point and a safety radius sphere. Quadro-
tor control applications similar to the aforementioned can
often necessitate the design of innovative control algo-
rithms, which address specific challenges inherent in prac-
tical control implementation.

In addition to practical implementation challenges, un-
certainty in the mathematical models for quadrotor dy-
namic systems is an unavoidable challenge that must be
addressed for reliable control implementation. The task
of designing robust control systems for quadrotors is in-
vestigated in [11–22, 24]. By virtue of the disturbance re-
jection capability of sliding mode control (SMC), a SMC
method is amalgamated with a backstepping-based design
approach to obtain position tracking for a quadrotor in
[11]. A global coordinate approach is proposed in [13] to
obtain robust attitude tracking of a rigid body in the spe-
cial orthogonal group in three dimensions (i.e., SO(3)). A
quadrotor UAV is considered in [17], which makes use of
visual targets to estimate translational velocity measure-
ments without the requirement for GPS measurements.
The challenges of model uncertainty and actuation time
delay due to the use of digital components are addressed
in [14, 15]. A distributed formation control algorithm for
multiple quadrotor aircraft is presented in [23]. Because
the potential sources of uncertainty, disturbances, sensor
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measurement limitations, and physical actuator limits are
so numerous and varied, there remain many open prob-
lems in the design of quadrotor control systems, which
are proven to effectively compensate for these unavoid-
able challenges.

The contribution of this paper is the design and stabil-
ity analysis of a quaternion-based robust nonlinear attitude
tracking controller capable of addressing the uncertainties
present in a 3-DOF experimental quadrotor hover system
test bed. The use of quaternions is motivated by the desire
to reduce the computational burden and eliminate singu-
larities in quadrotor aerial vehicle attitude control applica-
tions, where angular velocity measurements are directly
available using onboard rate gyros. Also formally ad-
dressed in the proposed design are the input voltage con-
straints inherent in the actuators (i.e, propeller motors). In
addition, the proposed control method is shown to com-
pensate for input-multiplicative parametric uncertainty in
the dynamic model, which results from unknown drag and
friction coefficients in the propeller dynamic model. To
avoid excessive computational burden, feed-forward con-
stant estimates of the input-multiplicative uncertainty are
implemented, eliminating the need for time-varying pa-
rameter adaptation laws. Replacing the conventional (and
high-gain demanding) sliding mode observer, a bank of
dynamical filters is employed to synthesize velocity esti-
mates for the closed-loop system, so that only position-
encoder measurements are required for feedback. A rigor-
ous Lyapunov-based stability analysis is utilized to prove
that the closed-loop system achieves asymptotic trajec-
tory tracking in the presence of the aforementioned model
uncertainty and practical limitations. Further, a rigorous
analysis is provided that determines the sufficient con-
ditions on the control gain selection, within which the
input-multiplicative parametric uncertainty can be com-
pensated. Simulation and experimental results are pro-
vided to demonstrate the performance of the proposed at-
titude tracking control law on the Quanser 3-DOF hover
system test bed. To the best of the authors’ knowl-
edge, this is the first hover system tracking control re-
sult that provides a rigorous stability analysis to quantify
the range of input-multiplicative parametric uncertainty
within which the closed-loop system can be proven to
remain asymptotically stable using only angular position
measurements for feedback.

The paper is organized as follows: Section 2 describes
the mathematical model for the hover system dynamics
and kinematics, which are used to develop the control de-
sign. Section 3 provides a mathematical description of
the tracking control objective using the quaternion kine-
matic model. Section 4 presents detailed derivations of the
control system design and the closed-loop tracking error
dynamics. Section 5 provides a detailed Lyapunov-based
stability analysis of the closed-loop system. Sections 6
and 7 present numerical simulation and experimental re-

sults, respectively, of the proposed control method using
the Quanser 3-DOF hover system test bed. Concluding
remarks are given in Section 8.

2. MATHEMATICAL MODEL

In this section, the mathematical model for the 3-DOF
rotational motion of the quadrotor hover system test bed is
presented. In addition to the basic dynamic equations, the
dynamic model incorporates the parametric uncertainty
and voltage input constraints that are inherent in the hover
system. The formal inclusion of these practical considera-
tions in the dynamic model is a key feature, which enables
us to design and rigorously analyze a control law that ad-
dresses these realistic implementation challenges.

2.1. Dynamic equations
The dynamics of the quadrotor system being considered

in this paper can be described using Euler’s equations for
rigid-body rotation as [25]

Jω̇ =−ω×Jω + τ. (1)

In (1), ω (t)≜
[

ωx (t) ωy (t) ωz (t)
]T ∈R3 is the an-

gular velocity of the quadrotor expressed in the body-
fixed frame, and J ∈ R3×3 denotes the positive-definite,
symmetric inertia matrix. Also in (1), ζ×, ∀ ζ ∈
R3, denotes the standard skew-symmetric matrix equiv-
alent to the vector cross-product operation, and τ(t) ≜[

τx (t) τy (t) τz (t)
]T ∈ R3 is the generalized torque

expressed in the body-fixed frame.

2.1.1 Uncertain electromechanical actuator model
The generalized torque τ (t) is generated by the com-

bined forces Fi, for i = 1, ...,4, generated by the propellers
onboard the quadrotor hover system. These forces are, in
turn, generated by the input voltages Vi, for i = 1, ...,4,
applied to the propellers. Mathematically, the generalized
torque can be expressed in terms of the input voltages as

τ ≜

 τx (t)
τy (t)
τz (t)

=

 blK2
v

(
V 2

4 −V 2
2

)
+JrωyΩr

blK2
v

(
V 2

3 −V 2
1

)
−JrωxΩr

dK2
v

(
V 2

1 −V 2
2 +V 2

3 −V 2
4

)
 , (2)

where Ωr = Kv (V1 −V2 +V3 −V4) denotes the overall
residual angular speed of the propellers. The gyroscopic
terms containing Ωr in (2) manifest themselves as distur-
bances in the dynamic model, and compensation for these
disturbances will be addressed in the subsequent analysis.
In (2), b,d ∈ R+ denote uncertain thrust and drag coeffi-
cients; l ∈ R+ is the uncertain distance from the pivot to
the motor, Kv ∈ R+ denotes an uncertain voltage transfor-
mation constant; and Jr ∈ R+ is the uncertain rotor inertia
(cf. [26]).

To compensate for the parametric uncertainty in the
torque model in (2), an auxiliary (virtual) voltage control
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signal u(t) ∈ R3 is defined via the parameterization

Bu =

 blK2
v

(
V 2

4 −V 2
2

)
blK2

v

(
V 2

3 −V 2
1

)
dK2

v

(
V 2

1 −V 2
2 +V 2

3 −V 2
4

)
 . (3)

In (3), the uncertain matrix B ∈ R3×3 and the virtual con-
trol input u(t) ≜ [u1 (t), u2 (t), u3 (t)]T are explicitly de-
fined as

B ≜

 blK2
v 0 0

0 blK2
v 0

0 0 dK2
v

 , (4)

and

u =

 u1

u2

u3

=

 V 2
4 −V 2

2
V 2

3 −V 2
1

V 2
1 −V 2

2 +V 2
3 −V 2

4

 . (5)

Remark 1 (Input voltage computation): The definition
of the virtual control input u(t) in (3) and (5) is moti-
vated by the desire to simplify the control design. In the
subsequent analysis, the control law will be designed in
terms of the virtual inputs ui (t), for i = 1,2,3; and in
experimental implementation, the virtual inputs are trans-
formed to non-negative input voltages by solving (5) for
V 2

i (t), for i = 1, ...,4. For the hover system considered
in this paper, the input voltages are required to satisfy
Vi ≥ Vb, i = 1, . . . ,4, where Vb ≥ 0 denotes a bias volt-
age. We solve (5) for input voltages in terms of the bias
voltage and virtual inputs as follows [26]:

V 2
2 =max [−min(u1,0),−min(u2,0)−û]+V 2

b ,

V 2
1 =V 2

2 + û,

V 2
3 =V 2

1 +u2,

V 2
4 =V 2

2 +u1, (6)

where û := 1
2 (u1 −u2 +u3).

Note that by adding the squared bias voltage V 2
b to V 2

2 ,
the bias voltage is essentially added to all input voltages.
The above solution guarantees that Vi ≥Vb, i = 1, . . . ,4.

2.2. Kinematic model
The rotational kinematics of the hover system can be

described in terms of the standard quaternion parameteri-
zation [25]

q̇v =
1
2
(q×v ω +qsω), (7)

q̇s =−1
2

qT
v ω, (8)

where qv(t) ∈ R3 represents the quaternion vector com-
ponent, and qs(t) ∈ R denotes the scalar component. The
quaternion vector can be expressed in the compact form

q(t) ∆
= {qv(t),qs(t)} ∈R3×R, which is subject to the con-

straint qT
v qv +q2

s = 1.
In the following analysis, the desired unit quaternion

qd (t)
∆
= {qvd(t),qsd(t)} ∈ R3 ×R represents the orienta-

tion of the desired body-fixed frame with respect to the
fixed inertial frame. Standard quaternion kinematics can
be used to show that rotation matrices R(qv,qs) ∈ SO(3)
and Rd (qvd ,qsd) ∈ SO(3) can be developed, which bring
the inertial frame to the actual and desired frames, respec-
tively.

3. CONTROL OBJECTIVE

The control objective is to force the hover system actual
body-fixed frame to track the desired frame. To quantify
this objective, an rotational error matrix R̃(ev,es) ∈ R3×3

is defined as

R̃ ≜ RRT
d = (e2

s − eT
v ev)I3 +2eveT

v −2ese×v , (9)

where e(t) ∆
= {ev(t),es(t)} ∈ R3 ×R is the quaternion er-

ror, and I3 denotes the 3×3 identity matrix. Physically, the
rotation matrix R̃(ev,es) represents the rotation that brings
the desired body-fixed frame to the actual frame. Thus,
the angular velocity error between the actual and desired
frames as expressed in the actual body-fixed frame can be
obtained as

ω̃ = ω − R̃ωd . (10)

To facilitate the subsequent control design and analysis,
an auxiliary error signal, r(t) ∈ R3, is defined as

r ≜ ω̃ +2αev + e f , (11)

where α ∈ R3×3 is a constant, diagonal, positive definite
control gain matrix, and e f (t) ∈ R3 is a subsequently de-
fined auxiliary error signal. Note that (11) can be used to
express the angular velocity error as

ω̃ = r−2αev − e f . (12)

By using (10), the quaternion error kinematics can be ex-
pressed as

ėv =
1
2

W (e) ω̃, (13)

ės =−1
2

eT
v ω̃, (14)

where the auxiliary matrix W (e) ∈ R3×3 is defined as

W (e) = e×v + esI3. (15)

Based on the aforementioned variable definitions, it can
be shown that the quaternion error satisfies the constraint
[25]

eT
v ev + e2

s = 1. (16)
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Based on (9) and (16), the control objective can be stated
mathematically as ∥ev (t)∥→ 0, which in turn implies that
R̃(ev,es)→ I3.

Assumption 1: The subsequent error system devel-
opment and stability analysis is based on the standard
assumption that the desired trajectory remains bounded
in the sense that ωd (t), ω̇d (t) ∈ L∞ and qd (t), q̇d (t),
q̈d (t) ∈ L∞ throughout closed-loop controller operation.

4. CONTROL DEVELOPMENT

The contribution in this paper is a rigorous error system
development and robust nonlinear control design, which
are proven to achieve attitude control for a quadrotor hover
system test bed in the presence of input-multiplicative
parametric uncertainty, unmodeled dynamics, and con-
trol voltage input constraints. Moreover, to address the
practical implementation consideration that only angular
position encoders are available for feedback, an output
feedback control strategy is employed, which is shown
to achieve asymptotic attitude regulation using only the
available measurements of position.

4.1. Open-loop error dynamics
The auxiliary error signal e f (t) introduced in (11) is an

output of a bank of dynamic filters defined as [27]

ṗ =−(k+2α)p−η +2(k+α)2ev + ev, (17)

η̇ = p−αη −2(k+α)ev, (18)

e f = p−2(k+α)ev. (19)

In (17)-(19), k ∈ R3×3 denote a constant, diagonal, pos-
itive definite control gain matrix; η (t) ∈ R3 denotes an-
other output of the filter; and p(t)∈R3 is an internal filter
variable.

After taking the time derivative of (19) and using (12),
(13), and (17), ė f (t) can be expressed as

ė f =−αe f −η + ev − (k+α)r− (k+α)∆(e) ω̃,
(20)

where ∆(e) ∈ R3×3 is defined as

∆(e) =W (e)− I3. (21)

The expression in (20) will be used in the subsequent sta-
bility analysis.

Assumption 2: It is assumed that the matrix mismatch
term ∆(e) satisfies

∥∆(e)∥i∞ ≤ ε < 1, (22)

where ε ∈ R+ is a known bounding constant, and ∥·∥i∞
denotes the induced infinity norm of a matrix. The bound-
ing condition in (22) can be interpreted as a limit on the
region of convergence of the proposed control law. This

can be practically viewed as a control design trade-off
that is required to prove asymptotic attitude regulation in
the presence of the input-multiplicative parametric uncer-
tainty that is inherent in the hover system test bed. Prelim-
inary results show that Assumption 2 is mild in the sense
that the proposed control law achieves asymptotic attitude
regulation over a wide operational range.

After taking the time derivative of r (t) in (11) and pre-
multiplying the result by J, the open-loop error dynamics
are obtained as

Jṙ = Jω̇ + Jω̃×R̃ωd − JR̃ω̇d +2Jα ėv + ė f , (23)

where the fact that ˙̃R =−ω̃×R̃ was utilized. By substitut-
ing the dynamic model (1) into (23), the open-loop system
can be expressed as

Jṙ =−ω×Jω +Bu+ Jω̃×R̃ωd − JR̃ω̇d

+ JαW (e) ω̃ −αe f −η + ev − (k+α)r

− (k+α)∆(e) ω̃ +χ (ω) , (24)

where (2), (3), (13), and (20) were utilized. In (24),
the auxiliary term χ (ω) ∈ R3 contains gyroscopic distur-
bances as

χ (ω)≜

 JrωyΩr

−JrωxΩr

0

 . (25)

To facilitate the subsequent nonlinear control design
and stability analysis, the open-loop error system (24) is
rewritten as

Jṙ = Ñ +Bu+Λαe f −Λev − (k+α)r, (26)

where Λ ∈ R3×3 is a subsequently defined uncertain aux-
iliary matrix, and the unmeasurable auxiliary term Ñ (t) ∈
R3 is explicitly defined as

Ñ ≜−ω×Jω + Jω̃×R̃ωd − JR̃ω̇d + JαW (e) ω̃
− (Λ+α)e f −η + ev +Λev − (k+α)∆(e) ω̃
+χ (ω) . (27)

The motivation for the grouping of terms in (27) is based
on the subsequent stability analysis and the fact that the
following upper bound can be developed:∥∥Ñ

∥∥≤ ρ (∥z∥)∥z∥ , (28)

where ρ (·) ∈ R is a positive, globally invertible nonde-
creasing function; and z(t) ∈ R12 is defined as

z(t)≜
[

eT
v (t) eT

f (t) rT (t) ηT (t)
]T

. (29)

4.2. Closed-loop error system
Based on the open-loop error system in (26) and the

subsequent stability analysis, the control input term u(t)
is designed as

u(t) = B̂−1 (ke f (t)) , (30)
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where k is a control gain introduced in (17)-(19). In (30),
B̂ ∈ R3×3 is a feedforward matrix containing constant,
‘best guess’ estimates b̂, d̂, l̂, K̂v ∈ R+ of the uncertain
parameters b, d, l, Kv in (3). Specifically, B̂ is defined as

B̂ ≜

 b̂l̂K̂2
v 0 0

0 b̂l̂K̂2
v 0

0 0 d̂K̂2
v

 . (31)

After substituting (30) into (26), the closed-loop error sys-
tem is obtained as

Jṙ = Ñ +Λ(ke f )+Λαe f −Λev − (k+α)r, (32)

where the uncertain constant mismatch matrix Λ ∈ R3×3

is defined as

Λ ≜ BB̂−1. (33)

Property 1: Since the symmetric matrix Λ is positive
definite, its inverse Λ−1 is positive definite and symmetric.

Remark 2 (Use of constant estimates): The use of con-
stant parameter estimates in the control law (30) is moti-
vated by the desire to reduce the computational burden in
the closed-loop system. The experimental results demon-
strate that the proposed control law achieves reliable atti-
tude control under significant parametric uncertainty.

By leveraging Property 1, the closed-loop error system
in (32) can be rewritten as

Λ−1Jṙ = Ñ1 +(k+α)e f − ev −Λ−1 (k+α)r, (34)

where Ñ1 ∈ R3 is defined as

Ñ1 ≜ Λ−1Ñ. (35)

Based on Property 1 and Inequality (28), the auxiliary
term Ñ1 (t) satisfies∥∥Ñ1

∥∥≤ ρ1 (∥z∥)∥z∥ , (36)

where ρ1 (·) ∈ R is a positive, globally invertible nonde-
creasing function.

5. STABILITY ANALYSIS

Theorem 1: The robust nonlinear output feedback con-
trol law given in (17)-(19), (30), and (31) ensures that
all system signals remain bounded throughout closed-loop
controller operation and ensures asymptotic attitude regu-
lation in the sense that

∥ev (t)∥→ 0 as t → ∞ (37)

provided (22) is satisfied and the control gain k introduced
in (17)-(19) is selected to satisfy the subsequently defined
sufficient condition.

Proof: Consider the nonnegative function V (t) defined
as

V = eT
v ev +(1− es)

2 +
1
2
(
eT

f e f + rT Λ−1Jr+ηT η
)
.

(38)

After taking the time derivative of (38) and utilizing (13),
(14), (18), (20), and (34) and cancelling common terms
V̇ (t) can be upper bounded as

V̇ ≤−λα ∥z∥2 + ε (λk +λα)∥z∥2

−λΛk

(
∥r∥2 − ρ1 (∥z∥)

λΛk
∥z∥∥r∥

)
, (39)

where Inequality (22) of Assumption 2 was utilized. In
(39), λα ≜ λmin (α), λk ≜ λmin (k), and λΛk ≜ λmin

(
Λ−1k

)
,

with λmin (·) denoting the minimum eigenvalue of the ar-
gument. After completing the squares in the parenthetic
terms in (39), the upper bound in (39) can be expressed as

V̇ ≤−
(

λα−
(

ρ2
1 (∥z∥)
4λΛk

+ε (λk+λα)

))
∥z∥2 . (40)

Inequality (40) can be expressed as

V̇ ≤−c0 ∥z∥2 (41)

where c0 ∈R+ denotes a bounding constant that is defined
over the domain D given by

D≜
{

z ∈ R12 : ∥z∥< ρ−1
1

(√
4λΛkλα−ε (λk+λα)

)}
.

(42)

The existence of the region of convergence can be ensured
provided the control gain matrices k and α are selected to
satisfy the sufficient condition

λmin
(
Λ−1k

) λmin (α)

λmax (k)+λmax (α)
>

ε
4
, (43)

where Λ is introduced in (33), and ε is introduced in (22).
The control gain matrices k and α can be selected to sat-
isfy the sufficient condition in (43), provided Assumption
2 is satisfied.

Remark 3 (Sufficient gain conditions under uncer-
tainty): The expression in (43) can be physically inter-
preted as the maximum deviation between the actual and
estimated input gain matrices B and B̂ that can be tolerated
for the proposed closed-loop system to achieve asymptotic
attitude regulation. It should be noted that Inequality (43)
represents a sufficient, not necessary, condition. The sub-
sequent experimental results demonstrate that the closed-
loop system achieves asymptotic attitude regulation in the
presence of significant input-multiplicative parametric un-
certainty.

Based on (38) and (41), it follows that z(t) ∈ L∞ in D,
hence ev (t), es (t), e f (t), r (t), η (t) ∈ L∞ in D. Given
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that r (t), ev (t), e f (t) ∈ L∞, (12) can be used to show that
ω̃ (t) ∈ L∞ in D; and Assumption 1 can be used along
with (10) to show that ω (t) ∈ L∞ in D. Since ω̃ (t), ev (t),
es (t) ∈ L∞, Equations (13) and (14) can be used to show
that ėv (t), ės (t) ∈ L∞ in D. Given that ev (t), e f (t), r (t),
ω̃ (t)∈L∞, (20) can be used to show that ė f (t)∈L∞ in D.
Since η (t), ev (t) ∈ L∞, Theorem 1.1 of [28] can be used
with (17) to prove that p(t), ṗ(t) ∈ L∞ in D. Given that
p(t), η (t), ev (t)∈L∞, it follows from (18) that η̇ (t)∈L∞
in D. Since e f (t) ∈ L∞, (30) can be used to show that
the control input u(t) ∈ L∞ in D. Given that ev (t), es (t),
e f (t), r (t), η (t), ω (t), ω̃ (t), u(t) ∈ L∞, the expressions
in (24) and (25) can be utilized along with Assumption
1 to show that ṙ (t) ∈ L∞ in D. Since ėv (t), ė f (t), ṙ (t),
η̇ (t) ∈ L∞, the definition in (29) can be used to show that
ż(t) ∈ L∞ in D; hence, z(t) is uniformly continuous in
D. The expressions in (38) and (41) can then be used to
prove that z(t)∈L∞∩L2 in D. Barbalat’s lemma can now
be invoked to prove that [29]

∥z(t)∥2 → 0 as t → ∞ ∀ z(0) ∈ D. (44)

Hence, (44) can be used along with (29) to prove that

∥ev (t)∥→ 0 as t → ∞ ∀ z(0) ∈ D. (45)

Since the region of convergence depends on the initial
conditions, it follows that the result is locally asymptot-
ically stable (LAS), where the radius of convergence has
been shown to depend on the degree of parametric uncer-
tainty in the input gain matrix B (see (42)).

6. NUMERICAL SIMULATION RESULTS

To validate the proposed hover system control
method, a numerical simulation was created using Mat-
lab/Simulink. The model applies the dynamics outlined in
(1) and (3), with control input conversion to voltage (5) to
address control saturation behavior. The dynamic bank of
filters defined in (17)-(19) fulfills its role of providing ve-
locity estimates for the control input described in (30) and
(31). For the quadrotor dynamics, the nominal parameter
values shown in Table 1 are utilized to obtain the moment
of inertia matrix for the plant model. The nominal param-
eters are used to define the plant model only. They are
assumed to be unknown and are not used in the control
law. The proposed robust control design compensates for
the uncertainty.

The simulation results presented here correspond to
control gains

α = diag{2.7,3,3} , k = diag{4.2,0.7,0.7} ,

while the feed-forward estimate matrix makes use of the
estimated parameters in Table I applied to (30). In all three
terms, the values provided were the result of combining

Table 1. Nominal and estimated input-multiplicative pa-
rameters used in the experiment.

Parameter Value

Thrust coef. Nominal b 3.935×10−6 N
V

Estimate b̂ 4.317×10−5 N
V

Drag coef. Nominal d 1.193×10−7 Nm
V

Estimate d̂ 3.054×10−6 Nm
V

Trans. const. Nominal Kv 54.945 rad
sV

Estimate K̂v 34.341 rad
sV

Pivot to motor Nominal l 0.197 m

Estimate l̂ 0.276 m

dynamical insight with desired performance such as set-
tling time and required voltage.

It must be noted that the Quanser test bed reads angular
position input in Euler angle notation, hence the simula-
tion must be converted in order to have a direct compar-
ison. While additional coding is implemented to ensure
that the unit quaternion constraint is always satisfied for
the simulation application, the provided range of initial
displacements reside in the first quadrant and thus do not
see ambiguity in unit quaternion transformation.

In order to clearly show the wide range of allowable
initial conditions provided by the feed-forward estimate
paradigm, a Monte Carlo-esque simulation scheme is pro-
vided, that investigates a family of initial angle conditions
spanning from 5 to 25 degrees with an increment of 5 de-
grees for all three Euler angles. The remaining initial con-
ditions of angular velocities and filter starting points were
set to 0. Two separate goals of roll ϕ (t) and pitch θ (t)
tracking of a desired sinusoidal trajectory (i.e., ϕd (t) and
θd (t)) were demonstrated, where the desired trajectory is
defined as

ϕd (t) = θd (t) = 10sin(0.5t). (46)

The desired trajectory in (46) is expressed in degrees,
and the desired yaw angle and the remaining Euler angle
in both cases are defined as 0, without loss of generality.
In order to demonstrate a realistic scenario, a 10 percent
noise factor was added to the quaternion position measure-
ment. The results of the control algorithm described can
be seen in Figs. 1-4. Specifically, Figs. 1 and 3 demon-
strate effective tracking of the desired commands within 4
seconds for a wide range of initial angular positions, while
Figs. 2 and 4 prove that the saturation voltage constraint is
respected, and that none of the provided scenarios exhibit
control saturation. In short, the feed-forward estimate ap-
proach in conjunction with the bank of dynamic filters can
be proven to be effective for a wide performance envelope.



www.manaraa.com

Quaternion-based Robust Trajectory Tracking Control of a Quadrotor Hover System 2581

0 5 10 15 20 25 30

t (s)

-20
0

20

 (
d
e
g
)

d

0 5 10 15 20 25 30

t (s)

-50

0

50

 (
d
e
g
)

d

0 5 10 15 20 25 30

t (s)

-5

0

5

 (
d
e
g
)

d

Fig. 1. Monte Carlo simulation results (pitch tracking):
the roll, pitch, and yaw displacements during
closed-loop controller operation of the simulated
hover system model.
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Fig. 2. Monte Carlo simulation results (pitch tracking):
voltages V1 (t), V2 (t), V3 (t), and V4 (t) [V] applied
to the four propellers during closed-loop attitude
controller operation.

7. EXPERIMENTAL RESULTS

To demonstrate the performance of the proposed atti-
tude tracking technique, an experiment was performed us-
ing the Quanser 3-DOF hover system test bed (see Fig. 5).
The test bed consists of a quadrotor helicopter system
mounted at the center of gravity on an air bearing joint,
such that the hover system is free to rotate in all three ro-
tational degrees of freedom. Roll, pitch, and yaw encoders
(with a resolution of 8192 counts per revolution) are used
for angular position measurements. The control law in the
experiment uses the bank of filters in (17)-(19) along with
the control law in (30) and (31). The control law incorpo-
rates the estimated parameter values in Table 1. It should
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Fig. 3. Monte Carlo simulation results (roll tracking): the
roll, pitch, and yaw displacements during closed-
loop controller operation of the simulated hover
system model.
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Fig. 4. Monte Carlo simulation results (roll tracking):
voltages V1 (t), V2 (t), V3 (t), and V4 (t) [V] applied
to the four propellers during closed-loop attitude
controller operation.

be noted that the nominal values of the inertia parameters
of the test bed are assumed to be unknown and are not
used in the control law.

The initial conditions of Euler angles, angular veloci-
ties and filter starting points were set to 0. Two separate
goals of roll ϕ (t) and pitch θ (t) tracking of a desired sinu-
soidal trajectory (i.e., ϕd (t) and θd (t)) were demonstrated,
where the desired trajectory is defined as

ϕd (t) = θd (t) = 10sin(0.5t). (47)

The desired trajectory in (47) is expressed in degrees, and
the desired yaw angle is defined as 0, with the remaining
Euler angle in both cases following a step command of
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Fig. 5. Quadrotor hover system (Quanser.com).
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Fig. 6. Experimental results (pitch tracking): time re-
sponse of the roll, pitch, and yaw displacements
during closed-loop controller operation of the sim-
ulated hover system model.

10 degrees, without loss of generality. Figs. 6-9 summa-
rize the experimental results achieved using the proposed
output feedback control law with control gains selected as

α = diag{2.7,3,3} , k = diag{4.2,0.7,0.7} .

To ease the interpretation of the experimental results, the
closed-loop response in Figs. 6 and 8 is provided in terms
of roll, pitch, and yaw displacements.

Moreover, Figs. 7 and 9 show that the commanded
control signals remain within reasonable voltage limits
throughout closed-loop controller operation. The exper-
imental results further demonstrate the capability of the
proposed control method to stabilize the hover system test
bed in the presence of significant uncertainty in the phys-
ical parameters inherent in the test bed (see Table 1).
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Fig. 7. Experimental results (pitch tracking): voltages
V1 (t), V2 (t), V3 (t), and V4 (t) [V] applied to the
four propellers during closed-loop attitude con-
troller operation.
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Fig. 8. Experimental results (roll tracking): time response
of the roll, pitch, and yaw displacements during
closed-loop controller operation of the simulated
hover system model.

8. CONCLUSIONS

A robust nonlinear output feedback control law, which
achieves 3-DOF attitude tracking of a quadrotor hover
system test bed, is presented. The proposed control
method formally incorporates the practical voltage con-
straints inherent in the control actuators (i.e., the quadro-
tor propellers). In addition, the control law is designed
to compensate for significant model uncertainty, includ-
ing input-multiplicative parametric uncertainty in the pro-
pellers’ dynamic model. To address a practical scenario,
where only position encoder measurements are available
for feedback, the control method utilizes a bank of dy-
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Fig. 9. Experimental results (roll tracking): voltages
V1 (t), V2 (t), V3 (t), and V4 (t) [V] applied to the
four propellers during closed-loop attitude con-
troller operation.

namic filters, which operates as a velocity estimator in the
closed-loop system. A Lyapunov-based stability analy-
sis is presented to prove the theoretical result, where de-
tailed control gain conditions are derived to compensate
for parametric input uncertainty. Experimental results are
provided to illustrate that the closed-loop system exhibits
favorable attitude control performance in the presence of
significant input-multiplicative parametric uncertainty, us-
ing only position encoder measurements for feedback.
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